
Job Scheduling in a Heterogeneous Grid Environment

Hongzhang Shan Warren Smith
Computational Research Division

Lawrence Berkeley National Laboratory
R e r k d q CA 94720

Computer Sciences Corporation
NASA Advanced Supercomputing Division

NASA A m s Research Center
Moffett Field, CA 94035

Leonid Oliker Rupak Biswas
Computational Research Division

b r e n c e Berkeley National Laboratory
Berkley, CA 94720

NASA Advanced Supercomputing Division
NASA A m s Research Center

Moffett Field, CA 94035

Abstract
Computational grids have the potential for solving large-scale scientific problems using heteroge-

neous and geographically distributed resources. However, a number of major technical hurdles must be
overcome before t h i s potential can be realized. One problem that is critical to effective utilization of
computational grids is the efficient scheduling of jobs. This work addresses this problem by describing
and evaluating a grid scheduling architectme and three job migration algorithms. The architecture is
scalable and does not assume control of local site resources. The job migration policies use the avail-
ability and performance of computer systems, the network bandwidth available between systems, and
the volume of input and output data associated with each job. An extensive performance comparison is
presented using real workloads from leading computational centers. The results, based on several key
metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater
than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

1 Introduction

One of the primary goals of grid computing [1,6] is to share access to geographically distributed heteroge-
neous resources in a transparent manner. There will be many benefits when this goal is realized, including
the ability to execute applications whose computational requirements exceed local resources and the reduc-
tion of job turnaround time through workload balancing across multiple computing facilities. The develop
ment of computational grids and the associated middleware has therefore been actively pursued in recent
years. However, many major technical (and political) hurdles stand in the way of realizing these benefits.
Among the myriad research issues to be addressed is the problem of distributed resource management and
job scheduling for computational grids. Although numerous researchers have proposed scheduling algo-
rithms for parallel architectures [3,4,5, 7, 9, 111, the problem of scheduling jobs in a heterogeneous grid
environment is fundamentally different. This is the focus of our work in this paper.

Our approach to this problem begins with defining a grid scheduling architecture that consists of au-
tonomous local schedulers that schedule access to computer system and grid schedulers, paired with local
schedulers, that send jobs to local schedulers and migrate jobs between grid schedulers. It is important that
grid scheduling be distributed for scalability and fault tolerance and it is important that local schedulers have
control of local resources so that grid scheduling will be accepted by the owners of the computer systems.
Our grid scheduling architecture is presented in Section 2.

Second, we propose algorithms for migrating jobs between grid schedulers. These algorithms try to
migrate jobs when the wait times of compute servers rises above or falls below specific thresholds. These
migration algorithms decide whether to send or receive jobs using the requirements of each job (number of
CPUs, wallclock time, amount of input data, and amount of output data) the availability and performance
of computer systems, and the expected network bandwidth available between systems. Our job migration
algorithms are presented in Section 3.

Third, we evaluate our grid scheduling algorithms by simulating compute servers, networks, and sched-
ulers and driving these simulations using workloads derived from trace data gathered from leading compu-
tational centers. We gather several key performance metrics during these simulations and use these metrics
t? c ? q z e the performance nf n i ~ r algorithms and reference local and centralized scheduling algorithms.
The methodolgy we use to gather performance data is presented in Section 4. Our experiments show that
one of our algorithms has slightly lower turn-around times than our others and that these times are 47% less
than if no grid scheduling is performed. Further, we find that for our experiments with larger data sizes and
lower network bandwidths, ignoring data transfers when making migration decisions can result in 690%
higher turn-around times. The results of our simulations and an evaluation of these results are presented in
Section 5. Finally, we present conclusions and future work in Section 6.

2 Grid Scheduling Architecture

We use a common grid scheduling architecture, shown in Figure 1, for the grid scheduling algorithms that we
propose. The architecture is composed of distributed compute servers, local schedulers with local queues,
and grid schedulers with grid queues. A local job is submitted to a local scheduler (LS) which places the
job in it’s local queue (LQ). The local scheduler removes jobs from the local queue and executes them
on the local compute server. A grid job is submitted to a grid scheduler which places the job in it’s grid
queue (GQ). A grid scheduler gathers information from it’s local scheduler and it’s peer grid schedulers
and decides whether to send jobs to the local scheduler, send jobs to other gnd schedulers, or request jobs
from other grid schedulers. One issue which we do not address in this work is how grid schedulers locate
their peer grid schedulers. We expect that traditional peer-to-peer (P2P) peer location approaches that use
centralized or distributed indexes can be used and we plan to examine this issue in future work.

There are a variety of grid scheduling architectures that we could have adopted. A centralized architec-
ture with a single scheduler for multiple computer systems might be a good choice for a relatively small set
of computer systems on a single machine room floor, but this approach won’t scale and is not fault tolerant
in a geographically distributed environment. A hierarchy where grid schedulers are organized into a tree
and jobs flow up and down the tree [8] is an interesting approach, but we do not expect it to scale as well as
a P2P approach. A variation of our architecture is one in which the local scheduler and grid scheduler are
combined into a single scheduler. This is starting to occur as scheduling vendors adopt a grid approach to
scheduling [12, 101, but these systems don’t interoperate and are not yet widely used. Another approach to
grid scheduling is where local scheduling is performed as usual but grid users use user-level grid schedulers
to select which local schedulers to submit applications to [2]. This approach is very similar to our P2P ap-
proach, the difference being that user-level grid schedulers are seeking to optimize the execution of jobs for a
single user while our grid schedulers are seeking to optimize the execution of all jobs. We believe this subtle
difference results in the P2P grid scheduling approach having greater potential scheduling performance. In
the end, we chose a P2P architecture with a grid scheduler co-located with each local scheduler. We believe
that this approach [131 gives us the best potential scalability, fault tolerance, and scheduling performance
without requiring that sites replace their local schedulers.

2

Grid Jobs

Grid
Queue

Local
Queue Scheduler

t

Figure 1: Our grid scheduling architecture. Solid arrows represent movement of jobs, dashed arrows repre-
sent transfer of information.

3 Grid Scheduling Algorithms

This section presents the three distributed scheduling algorithms that are the subject of this work and two
reference algorithms. Our distributed scheduling algorithms are the sender-iniriated, receiver-initiated, and
symmetrical2y-initiuted algorithms. These algorithms operate in a P2P manner and use different strategies
for migrating jobs between grid schedulers. Our two reference algorithms that we use for comparison are
a centralized algorithm that uses a single grid scheduler that interacts with all local schedulers and a local
algorithm that has no grid schedulers and executes all jobs on the compute server where they were submitted.

3.1 Distributed Algorithms

Our three distributed algorithms are based around common steps:

1. A job j is submitted to a grid scheduler on compute server s and is placed in the associated grid queue.

2. The grid scheduler asks the local scheduler on s for the approximate wait time (AWT) of the job. The
approximate wait time is the amount of time the local scheduler estimates job j, if submitted to it,
will wait in the local queue before it begins executing. The AWT is computed by simulating the local
scheduling algorithm using the local jobs that are either running or waiting in the local queue and
the job j. If the local scheduler cannot satisfy the resource requirements of j, an AWT of infinity is
returned.

3. The grid scheduler tests the approximate wait time for j against a threshold 4. If the AWT is less than
4, j is sent directly to the local scheduler for execution on s. If the AWT is at least $, the job is kept
in the grid queue and one of our job migration algorithms is invoked.

3.1.1 Sender-Initiated

In the sender-initiated (S-I) strategy, the grid scheduler sends the resource requirements of the job to it’s
peers. In this study, we only consider the CPU and run time requirements of each job; however, this can be
extended to an arbitrary number of resource constraints. In response to the query, each peer grid scheduler

3

returns the approximute turnaround time (ATT) for the job and the resource utilization (RU) of the compute
server associated with grid scheduler. ATT is an estimate of the amount of time it will take to complete a job
and the ATT for a job j on computer server seZec that is initially submitted to a grid scheduler on compute
server sinit is derived in the following way:

ATT(j, sezec) = maz(AJ+’T(j, Sezec), ADT(jin, S i n i t , s e z e c)) + E R T (j , Sezec) +ADT(jout, Sereec, Sini t))

Before a job begins to execute, it needs to both wait in a local queue and transfer input data to the system
where it will execute. AWT(j, sezec) is the approximate wait time ofjob j on Sezec and ADT(jzn, sznzt, Sezec)

is the approximate data transfer time (ADT) of the input data of j from smzt to Sezec. We assume that these
activities can be performed simultaneously so the maximum of the two constrains when the job can be-
gin executing. The job then executes on sa,, with an expected run time of ERT(j, SeZec) and the output
data is transferred from where it executed to the compute server where it was initially submitted in time
ADT(jOut, Sezec, sznzt). Note that the expected run time can vary from one compute server to another de-
pending on their architectural designs and program characterizations. We simplify the calculation of ERT
by assuming that run time is only related to the clock frequency of the compute server.

Resource utilization is the fraction of the computer server that is currently being utilized. We assume
our compute servers have multiple CPUs that are space shared so we calculate RU as the number of CPUs
assigned to jobs divided by the total number of CPUs. If certain peer grid schedulers do not respond within
a specified time limit due to traffic congestion or machine failure, they are simply ignored for that request.

Based on the collected information, the grid scheduler calculates the potential turnaround cost (TC)
of itself and each partner. To compute the optimal TC, first the minimum approximate turnaround time is
found. If the minimum ATT is within a small tolerance E for multiple machines, the system with the lowest
resource utilization is chosen to accept the job. Thus the TC metric attempts to minimize the user’s time-
to-solution, while using system utilization as a tiebreaker. We found this approach to be more effective then
simply relying on ATT. The job is then sent to the local scheduler (by way of it’s partner grid scheduler)
on the computer server with the minimal turnaround cost. Note that once a job enters a local queue, it will
be scheduled and run based exclusively on the policy of the local scheduler, and can no longer migrated to
another site.

3.1.2 Receiver-Initiated

The receiver-initiated (R-I) algorithm takes a more passive approach to job migration than the S-I strategy.
Here, each system in the computational grid checks its own resource usage periodically at time interval CT.
If the RU is below a certain threshold 6, the machine volunteers itself for receiving jobs by informing its
partner set of its low utilization. Once a peer grid scheduler (say, GS,) receives this information, it checks
its grid queue for the first job waiting to be scheduled. If a job is indeed queued, its resource requirements
are sent to the volunteer node. The underutilized system then responds with the job’s ATT, as well as its own
RU. Based on this data, GS, computes and compares the turnaround cost between itself and the volunteer
system. If the TC of the volunteer is lower than that of GS,, the job is transferred to the LQ of that system
through the GM. Otherwise, it continues to wait in the GQ until either its local AWT falls below 4 (examined
at time interval CY), or an available machine volunteers its services.

3.1.3 Symmetrically-Initiated

Unlike S-I and R-I, the symmetrically-initiated (Sy-I) algorithm works in both active and passive modes.
As in the R-I strategy, each machine periodically checks its own resource usage and broadcasts a message
to its partner set if it is underutilized. The difference occurs when the local approximate wait time Of a
job exceeds 4 but no underutilized machine volunteers its services. In the R-I approach, the job passively

4

t

sits in the GQ while waiting for a volunteer, and periodically checks its local AWT at each o time interval.
However, the Sy-I algorithm immediately switches to active mode and sends a request to its partners using
the S-I strategy. The main differences in the three job migration algorithms therefore lie in the timing of the
job transfer request initiations and the destination choice for those requests.

3.2 Reference Algorithms

We use two scheduling algorithms as reference algorithms to compare our work to. The centralized al-
gorithm has a single grid scheduler and represents a performance target for our distributed scheduling ap-
proaches. The local algorithm performs no job migration and represents the current non-grid scheduling
environment.

3.2.1 Centralized

In the centralized scheduling algorithm, all jobs are submitted to a single grid scheduler which does not
have an aflinity to a specific local system. The GS is responsible for making global decisions and assigning
each job to a specific machine. The GS tracks the status of each job and maintains up-to-date information
on all available resources, allowing it to compute the turnaround cost directly, without the need for any
communication. When a job arrives, the GS computes its TC for all systems, selects the one with the
minimum TC, and immediately migrates the job to that system. Although communication-free resource
awareness is an unrealistic assumption, it allows us to model the potential gain of a centralized architecture.
However, it constitutes a single point of failure and thus suffers from a lack of reliability and fault tolerance.
Additionally, this approach has severe scalability problems that may result in a performance bottleneck for
large-scale grid environments.

3.2.2 Local

In the local scheduling algorithm, there are no grid schedulers. All jobs are submitted to local schedulers
and execute on the compute server associated with each local scheduler. This approach represents how
scheduling is currently being performed and we use it as a way to demonstrate the benifits of grid scheduling
algorithms.

4 Methodology

We evaluate our grid scheduling algorithms using simulations of resources and jobs. We simuluate the
submission of workloads of jobs to grid schedulers, the operation of grid and local schedulers, the transfer
of job input and output data between compute servers, and the execution of jobs on compute servers. During
these simulations, we gather performance information so that we can compare the various grid scheduling
algorithms.

4.1 Resource Configurations

We simulate 7 different compute servers in our simulations. These systems have the identical characteristics
as those located at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berke-
ley National Laboratory, the NASA Advanced Supercomputing Division at NASA Ames Research Center,
the Lawrence Livermore National Laboratory, and the San Diego Supercomputer Center. These systems
are all parallel computers some of which consist of cache-coherent Symmetric MultiProcessor (Sh4P) nodes
interconnected by a fast proprietary network others of which are Nonuniform Memory Access (NUMA)

5

Server Number CPUs CPUSpeed

S I 184 16 375
Identifier of Nodes per Node (MHz)

Table 1: Configurations of the computational servers and assignment to sites when there are 3 sites, 6 sites,
or 12 sites.

Site Identifier
(3 site) (6 site) (12 site)

0 0 0

shared memory systems also connected by a fast proprietary network. Both types of systems partition CPUs
into nodes for management purposes and the current practice is to allocate each node to a single applica-
tion so that applications do not interfere with each other. We therefore used this allocation approach in our
simulation environment.

We want to use 12 compute servers to give us more options for splitting servers into sets, so we dupli-
cated 5 of the 7 compute servers to produce a total of 12. We then split the systems into 3, 6, and 12 sets to
simulate compute servers grouped into 3,6 , or 12 machine rooms at different sites. Each set has an equal
number of machines and we attempted to make the computational power in each set as equal as we could.
The characteristics of these systems and the sites to which they are assigned are shown in Table 1.

We also simulate the networks connecting the compute servers. We assume that all of the compute
servers at a single site share a network and that each of these networks is connected to every other site
network using a point-to-point network connection. When we simulate the transfer of data for a job, we
simulate the use of a site network on the sending side, a point-to-point network, and a site network on
the receiving side. Any of these three networks can constrain the end-to-end data transfer bandwidth. We
assume that all data transfers using a network share the network bandwidth equally. We perform simulations
using two different assumptions about available network bandwidth. First, we assume that 800 Mb/s is
available from each site network and 40 Mb/s is available from each point-to-point network. This represents
a gigabit ethernet site network and a relatively high performance Wide Area Network (WAN). Second, we
assume that 80 Mb/s is available from each site network and 4 Mb/s is available from each point-to-point
network. This represents a 100 megabit ethernet site network and a somewhat slower WAN.

For the experiments in this paper, we make two simplifying assumptions. First, we assume that program
performance is linearly related to CPU speed. Second, even though the systems we are simulating are not
all binary compatible, we assume that users have compiled their applications for each of the heterogeneous
platforms. We plan to relax both of this assumptions in future work.

6

Workload
Identifier

4.2 Workloads

Start End Number Average Input Size (MB)
Date Date of Jobs (1 ,OOOB/CPU*sec)

We base our workloads on trace data obtained from schedulers on 7 compute servers. Seven traces, one
from each system, were recorded from March of 2002 through May of 2002. Five traces were gathered
from 5 of the same 7 systems but recorded from September of 2002 through November of 2002. These 12
traces do not include information on how much input data is used by each job and how much output data is
produced by each job because this data is not typically available to local schedulers. So, we added synthetic
information about input and output data sizes to each job in the workloads.

When adding input and output data sizes to the jobs, we assume that the amount of this data is correlated
to the amount of work (number of CPUs multiplied by amount of wallclock run time) performed by each job.
We also add a random element to calculating this data so we set the amount of input data for a job j using a
Gaussian distribution with a mean pj = b*cps j * walltime-secondsj and a standard deviation Of aj = 9
where b is the amount of bytes for each unit of work the job performs. Using anecdotal observations, our
best estimate for b is 1 , W bytes for each CPU second the application executes. For comparison, we also
create workloads assuming that b is 100 and 10,OOO. We refer to these workloads, creatively, as small data,
medium data, and large data In all cases, we assume that the output data size is 5 times as large as the input
data size calculated using one of the previous methods.

The characteristics of our workloads are shown in Table 2.

..l

*8
Wg
W ~ O
W11
W12

4 3 Performance Metria

42.8
09/01/2002 11130/2002 12,666 328.3
09/01/2002 11/30/2002 5,236 29.3
09/01/2002 11/30/2002 11,804 226.5
09/01/2002 11/30/2002 6,911 53.7

@,,(jl/,2w2 I ii,,3(-j/*2w2 27,*3 I

We use several key metrics in our simulations to evaluate the effectiveness of our proposed grid scheduling
architecture and job migration algorithms. These metrics are also used to compare performance with local
and centralized job scheduling schemes.

Since individual users and system administrators often have different (and possibly conflicting) de-
mands, no single measure can comprehensively capture overall grid performance. From the users’ perspec-
tive, key measures of grid performance include the Average Response lime and the Average Wait 7ime.
These are computed as follows (N is the total number of jobs):

7

1 Average Response Time = -
N

(EndTimej - SubmitTimej)
j 6 Jobs

1 Average Wait Time = -
N

(StartTime,, - Submitnme,,)
,,€Jobs

where SubmitTimeJ, Startrime,,, and EndTimej are the times when job j is submitted to the queue, when it
commences execution, and when it is completed. The response (or turnaround) time is probably the single
most important measure for an individual submitting a job; however, the wait time is also critical to users
even though it is usuaiiy beyond fneir conuoi.

A system administrator (or funding agency), on the other hand, is more interested in maximizing the uti-
lization of the available computational resources at hisher center. Thus, we present the Weighted Utilization
metric, which measures the overall ratio between consumed and available computational resources across a
grid. It is computed as:

CjEJobs(Endrimej - Startrimej) X CPUsj X CPUSpeedj
(EndTimelast-job - SubmitEmefirst_job) x xmEServers CPUs, x CPUSpeed,

Weighted Utilization = x 100%

where (~ n d ~ m e ~ a s t ~ ~ o ~ - ~ u b m i t ~ m e ~ ~ r s t ~ ~ o ~) is the duration of the entire simulation; CPUsj and CPUSpeedj
are the number of processors used by job j and their clock speed; and CPUs, and CPUSpeed,,, are the num-
ber of processors in machine m and their clock speed. Individual site-specific system utilizations are also
reported to understand the effects of superscheduling on local computational centers.

The metric Fraction of Jobs Transferred allows us to determine if there is any relationship between the
number of jobs transferred and the performance of the scheduling algorithms. This metric is defined as:

Number of Jobs Transferred
Total Number of Jobs

Fraction of Jobs Transferred =

Finally, we use the total volume of data transferred to help determine if the amount of data transferred
by a scheduling algorithm is affecting it’s Performance. This metric is defined as:

Data Volume = (ZnputDataSizej + OutputDataSize j)

j 6 Jobs

Note that performance, measured by any metric, is highly dependent on the workload requirements. For
example, we would not expect an underloaded system to derive much benefit from a superscheduler in terms
of grid efficiency, as there may not be much room for improvement.

5 Results

This section presents and analyzes the simulation results of our job migration algorithms using the perfor-
mance metrics described in Section 4.3.

To begin, we compare the performance of our sender-initiated, receiver-initiated, and symmetrically-
initiated job migration algorithms. The performance data for these algorithms is shown in Figure 2. One
of the most important metrics is the average response time because that is ultimately what users care about.
We find that the S-I algorithm has the lowest average response time and this response time is 5.5% less
than the response times resulting from the other two algorithms. This response time is 47% better than the
response time if only local scheduling is performed and is only 0.4% worse than the response time Of the

8

A- W8R Timc

-V-

u I ...-..- I

Figure 2: Comparison of the performance of our migration techniques.

centralized algorithm. We also find that the average wait times correlate with the response times: S-I has
the lowest average wait time (62% less than the wait times of R-I and Sym-I) and this wait time is 34% less
than the average wait time of the centralized algorithm. These differences are much more significant than
the response time differences, but do not end up being significant because, on average, the wait time is only
6% of the response time.

Figure 2 also shows the average amount of data moved for each job. We find that the average data
volume does not correlate with the response times: The local algorithm moves the least data and has the
worst response times. The receiver-initiated and symmetrically-initiated algorithms move the next least
amount of data and have the next highest response times. We do find that the centralized algorithm moves
less data then the sender-initiated algorithm and also has lower response times.

A final observation is that the weighted average utilization is identical (53%) for our algorithms. This
is because the jobs are submitted over time, rather than all at once, and the resource utilization obtained by
even the best scheduling algorithm limited by the amount of work that is submitted to it.

The data presented in Fi,pre 2 allows us to begin examining the effect of decreasing network bandwidth
by a factor of 10. We find that this does not have a significant impact on response time or wait time but it
does it does result in a 46% reduction in the amount of data transferred over the network and that 88% more
jobs are executed on servers in the same site to which the they are submitted. This shows that our migration
algorithms are adapting, and adapting well, to the decrease in network bandwidth. If we perform a more
detailed examination and examine the performace for our small, medium, and large data workloads, we
do see the effects of decreasing network bandwidth. This information for the sender-initiated algorithm is
shown in Figure 3. The data shows that the large data workloads have a significant 15% increase in response
time when network bandwidth is lowered while the medium data workloads only has a 2% increase and
there is virtually no increass in response time for the small data workloads.

We can also use Figure 3 to examine the effect of increasing the amount of data transferred per job.

9

Avenge wait rime

D a b Volume

Figure 3: Performance of our sender-initiated algorithm when varing the amount of data per job.

We find that it does have a small effect when we simulate the higher network bandwidths, but the effect is
more significant for lower network bandwidths. We find that the reducing data sizes from medium to small
results in a reduction in response time by 2% while increasing data sizes from medium to large results in an
increase in response time by 15%.

We next examine the effect of the number of sites the compute servers are grouped in to (data not shown).
Contrary to our intuition, we find that the number of sites the servers are grouped in is not significant.
When we examine the performance of the sender-initiated algorithm, we find that even with our large data
workloads and lowest network bandwidth, having 6 sites actually reduces the average response time by 0.2%
over having 3 sites and having 12 sites only increases response time over 3 sites by 0.2%.

Finally, we find that it is important to consider the size and placement of input and output data as well as
the available network bandwidth when making migration decisions. We performed simulations of versions
of our migration algorithms that do not consider the transfer of input and output data when making decisions.
We have not completed these simulations, but for the symmetrically-initiated algorithm and workloads with
large data sizes, ignoring data transfers when making decisions results in only a 4% increase in transfer times
when using faster networks but results in a 690% increase in response times when using slower networks.

6 Conclusions and Future Work

One of the primary goals of grid computing is to share access to geographically distributed heterogeneous re-
sources in a transparent manner. There will be many benefits when this goal is realized, including the ability
to execute applications whose computational requirements exceed local resources and the reduction of job
turnaround time through workload balancing across multiple computing facilities. We address this problem
by defining a grid scheduling architecture and job migration algorithms and evaluating their performance.

Our grid scheduling architecture is a peer-to-peer architecture which, we believe, is the architecture that

10

T-

will provide the best scalability and fault tolerance. Further, our architecture leaves local schedulers in place
and therefore does not take over control of local resources.

We propose three job migration algorithms; the sender-initiated algorithm sends jobs from overloaded
compute servers to less loaded servers, the receiver-initiated algorithm requests jobs from underloaded com-
pute servers, and the symmetrically-initiated algorithm uses a combination of both approaches. Our exper-
iments show that our sender-initiated algorithm has over 5% lower turn-around times than our others and
that these times are 47% less than if no grid scheduling is perfomed. Further, we find that for our experi-
ments with larger data sizes and lower network bandwidths, ignoring data transfers when making migration
decisions can result in 690% higher turn-around times.

There are several areas of future work that we plan to explore. We wish to study how our g i d schedulinz
scales to a large number of grid schedulers, including addressing problems such as how grid schedulers find
peers. We plan to re lq assumptions such as performance being related only to CPU speed and that every
application can execute on every system. We also wish to compare our grid scheduling approach to others
such as hierarchical and when grid and local schedulers are combined.

References

Global Grid Forum. http://www.gridforum.org.

Fran Berman, Rich Wolski, Silvia Figueira, Jennifer Schopf, and Gary Shao. Application-Level
Scheduling on Distributed Heterogeneous Networks. In Supercomputing '96, 1996.

D.G. Feitelson. Packing schemes for gang scheduling. In 2nd Workshop on Job Scheduling Strategies
for Parallel Processing, volume LNCS 1162, pages 89-100, 1996.

D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Sevcik, and P. Wong. Theory and practice in
parallel job scheduling. In 3rd Workshop on Job Scheduling Strategies for Parallel Processing, volume
LNCS 1291, pages 1-34,1997.

D.G. Feitelson and A.M. Wed. Utilization and predictability in scheduling the IBM SP2 with backfill-
ing. In 12th International Parallel Processing Symposium, pages 542-546, 1998.

Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing Infrmnucture.
Morgan Kaufmann, San Francisco, CA, 1999.

H. Franke, J. Jann, J.E. Moreira, P. Pattnaik, and M.A. Jette. A evaluation of parallel job scheduling
for ASCI Blue-Pacific. In SC99 Conference, CD-ROM, 1999.

V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of job-scheduling strategies
for grid computing. In 1st International Workshop on Grid Computing, volume LNCS 1971, pages
191-202,2OOo.

J. Krallmann, U. Schwiegelshohn, and R. Yahyapour. On the design and evaluation of job scheduling
algorithms. In 5th Workshop on Job Scheduling Strategies for Parallel Processing, volume LNCS
1659, pages 17-42, 1999.

The h a d Sharing Facility. http://www.platform.com/products/LSFfamily/.

R.D. Nelson, D.F. Towsley, and A.N. Tantawi. Performance analysis of parallel processing systems.
IEEE Transactions on Sofrware Engineering, 14(4):532-540, 1988.

11

[121 The Portable Batch System. http://www.pbspro.com.

[131 Hongzhang Shan, Leonid Oliker, and Rupak Biswas. Job Superscheduler Architecture and Perfor-
mance in Computational Grid Environments. In SC2003 Conference, 2003.

12

